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Abstract 
 

The paper adopts several time series models to assess the forecasting efficiency of 
future realized volatility in Taiwan stock market. The paper finds that, for 1-day directional 
accuracy forecast performance, semiparametric fractional autoregressive model 
(SEMIFAR, Beran and Ocker, 2001) ranks highest with 78.52% hit accuracy, followed by 
multiplicative error model (MEM, Engle, 2002), and augmented GJR-GARCH model. For 
1-day forecasting errors evaluated by root mean squared errors (RMSE), GJR-GARCH 
model augmented with high-low range volatility ranks the highest, followed by SEMIFAR 
and MEM model, both of which, however, outperform augmented GJR-GARCH by the 
measure of mean absolute value (MAE) and p-statistics (Blair, Poon and Taylor, 2001). 
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1.  Introduction 
Return volatility has become the center of financial economists in asset pricing and risk management in 
recent decade. The construction methods of return volatility and its forecasting efficiency are widely 
studied by a large amount of literature. The recent availability of tick data has also spurred the 
application of so called high frequency data in volatility measures. A widely used proxy for ex post 
daily volatility is the realized volatility (RV) by Andersen, Bollerslev, Diebold and Labys (2001). 

The RV or realized variance is also called the integrated variance which can be approximated 
by summing the intraday squared returns with adequate sampling frequency (Merton, 1980, Andersen 
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and Bollerslev, 1998). For a continuous diffusion process with jumps, the quadratic variation equals 
the sum of integrated volatility and the squared jumps through time. By Andersen et al. (2001), 
Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2003), the RV will converge to the 
integrated volatility in the absence of jumps when sampling frequency goes to infinity. In the presence 
of jumps, the RV still provide consistent estimates of quadratic variation for the jump diffusion 
process. 

The precision of RV measures tends to increase with the sampling frequency. However, a high 
sampling frequency creates more interval returns which are easily affected by market microstructure 
noise like bid-ask bounce, measurement error, nonsynchronous prices, etc. Relevant studies on the 
optimal choice of sampling frequency and the methods to isolate microstructure noise from realized 
volatility are found in literature. The literature also documents various sampling frequencies ranging 
from 5- to 30-minute (Andersen and Bollersleve, 1997; Andersen et al., 2003, Giot and Laurent, 2007). 
As the sampling frequency is not the main interest of the paper, the 20-minute intraday returns are used 
to construct the realized variance series. By assuming the computed RV as a benchmark, the paper 
explores more about the forecasting efficiency across econometric models. 

To better fit the constructed realized volatility series with some stylized facts like fat tails, long 
memory, and high level of skewness and kurtosis, various models to forecast RV are adopted in 
literature. Andersen et al. (2003) show that, by using the logarithmic daily RV of exchange rates, a 
simple long-memory Gaussian vector autoregression performs better than other econometric models. 
Corsi (2004) proposes another form of long-memory model, HAR-RV, to forecast USD/CHF data with 
admirably better forecasting performance than other standard models like GARCH or ARFIMA. Lane 
(2006) further uses a mixture multiplicative error model (MEM) to forecast RV with a good 
forecasting result. 

For comparison purpose, the paper includes the range volatility as an explanatory variable in 
the conditional variance by GJR-GARCH. The academic analysis of price range, which is defined as 
the difference between the highest and lowest prices of assets over some time interval, can be dated 
back to Parkinson (1980) and Garman and Klass (1980) and has seen a rapidly expanding literature on 
range-based volatility in recent years. The empirical results show that variances measured by range 
estimators efficiently approximate the daily integrated variance and the performance evaluation of 
range-based estimators can be found in Shu and Zhang (2006). Survey references include Poon (2005), 
McAleer and Medeiros (2008) and Chou et al. (2008). 

The paper aims to compare several long memory models with other standard econometric 
models in forecasting efficiency for RV in Taiwan stock market. Several measures are also adopted to 
evaluate the forecasting performance of the models examined. The paper is structured as follows. 
Section 2 describes the data. Section 3 makes a brief review of the adopted models in theory. Section 4 
is the empirical results of out-of-sample volatility forecasts and evaluations across models. Section 5 is 
the conclusion. 
 
 
2.  Data 
2.1. Construction of Volatility Series 
The daily closing index of TAIEX and intraday minute-tick index are obtained from Taiwan Economic 
Journal (TEJ). The full sample range starts from 1999/4/1 to 2007/12/311. The daily realized volatility 
(RV) is obtained by summing the intraday 20-minute interval returns including the overnight returns 2. 
The in-sample data range starts from 1999/4/1 to 2003/12/31 with 1,217 observations on daily returns 
and realized volatilities. The out-of-sample period starts from 2004/1/2 to 2007/12/31 with a total 992 
trading days. The range-based volatility is computed by the formula suggested by Parkinson (1980): 

                                                 
1 The data starts from 1999/4/1 as the intraday 1-minute trading index is not available in the database before that time. TAIEX has extended the daily 

trading time from 12:00 to 13:30 since 2001/1/2.  
2 Given the presence of microstructure effects in TAIEX market, the sampling frequency of 20-minute intraday return is adopted instead of the usually 

adopted 5-minute frequency in literature. 
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ˆtσ  represents the intraday high-low range volatility on day t. th  and tl  denote the highest and lowest 
price levels observed during trading on day t. The descriptive statistics are listed in Table 1. Similar to 
the empirical results in literature, both volatilities are right-skewed and leptokurtic. After taking 
logarithms, however, both logarithmic volatility series appear to be Gaussian. 
 
Table 1: Daily Realized Volatility Distributions 
 

 Mean St. Dev. Skewness Kurtosis Q(20)a 
Realized volatility 0.096 0.022 1.017 4.235 2150.1 
Logarithmic RV -2.360 0.219 0.363 3.079 2119.5 
Range volatility 0.007 0.004 2.065 8.819 1324.0 
Logarithmic range volatility -5.073 0.494 0.396 3.284 1425.7 

a. Ljung-Box test statistics for up to twentieth order serial correlation. 
 
 
3.  Model Specifications 
3.1. RV-based Models 
3.1.1. Multiplicative Error Models 
The goal of the paper is to evaluate the forecasting performance of numerous econometric models 
based on the high frequency daily realized volatility. Return-based models, i.e, models based on the 
assumptions of return process, are also estimated for comparison purpose and will be discussed in later 
section. The first model is the multiplicative error models (MEM) suggested by Engle (2002) to model 
the RV series. As the multiplicative models allow non-negative series to be modeled, MEM(p,q) 
models can be formulated as follows: 

t t tRV μ= ε  (2) 

1 1
1 1

p q

t i t j t
i j

w RVμ α β μ− −
= =

= + +∑ ∑  (3) 

where tμ  is the conditional mean of the RV based on all information up to time t, and the error term tε  
is assumed to be independent and identically distributed (iid) with a unit mean from a non-negative 
distribution like exponential or gamma distribution. By Engle and Gallo (2006) and Lanne (2006), the 
gamma distribution seems to be the best choice for RV. The parameters of the gamma distribution are 
assumed to be constrained as ~ ( , )t Gamma γ δε , where 1/δ γ=  is to ensure the error term to have a 

unit mean. The estimation of MEM(p,q) model is based on the annualized RV series by 252* RV  
and the result is listed in Table 2. The results reveal that MEM11 is not superior to MEM22, but while 
in making iterated forecasts for 1-day ahead volatilities, the MEM22 yields frequent convergence 
failures and therefore, MEM11 is selected as the forecasting model in the paper. 
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Table 2: Estimation results of multiplicative error model a 
 

MEM(p,q) ω  1α  
2α  

1β  
2β  γ  Logl AIC SC 

0.012*** 0.207***  0.746***  7.931*** 1290.81 -2.115 -2.098 MEM11 (4.051) (11.292)  (31.357)  (29.296)    
0.012*** 0.225***  0.583*** 0.143 7.939 1291.46 -2.114 -2.093 MEM12 (3.774) (8.591)  (4.015) (1.163) (29.132)    
0.009** 0.235 -0.064* 0.794***  7.944*** 1291.88 -2.115 -2.094 MEM21 (3.382) (8.775) (1.854) (27.761) (28.998)     

0.001 0.232*** -0.208*** 1.522*** -0.551*** 7.991*** 1295.62 -2.119 -2.094 MEM22 (1.074) (9.878) (8.567) (13.664) (5.783) (28.661)    
a. t-statistics are given in parenthesis. *, ** and *** represent the significance level with p-value of 0,1, 0.05 and 0.01. Logl is the log-likelihood value. 

AIC and SC are Akaike information criterion and Schwartz Bayesian criterion, respectively. 

 
3.1.2  Semiparametric Fractional Autoregressive (SEMIFAR) Model 
Numerous empirical studies support an existence of long memory in financial volatility series (Lobato 
and Savin, 1998; Ray and Tsay, 2000). Andersen et al. (2001b) and Martens and Zein (2004) suggested 
using fractional ARIMA (FARIMA) with an estimated memory parameter (d) around 0.4. Beran and 
Ocker (1999, 2001) and Beran et al. (1999) proposed the semiparametric fractional autoregressive 
(SEMIFAR) model by introducing a deterministic trend along to the FARIMA(p,d,0) model 3 

( )(1 ) [(1 ) ( )]m
t t tL L L y g iδφ − − − = ε  (4) 

where L is the backshift operator, 
1

( ) 1
p

i
i

i
L Lφ φ

=

= −∑  is a polynomial with roots outside the unit circle, 

( )tg i  is a smooth trend function on [0,1] with /ti t T=  and tε  is iid normally distributed with mean 
zero and variance 2σ ε . Beran and Ocker (2001) fitted SEMIFAR models with daily volatility series of 
19 stock market indexes and found a significant trend among developed countries under consideration 
4. For comparison purpose, the short memory models like ARMA model is also estimated in 
forecasting future volatility. The model of ARMA(1,1) and AR(3) are adopted to forecast 1-, 5- and 
22-day ahead volatilities. 
 
3.2. Return-Based Models 
3.2.1. GJR-GARCH Model 
As the financial volatility is a latent factor and unobservable, models based on asset returns to imply 
out the dynamics of volatility become more feasible in most cases. This section starts with the widely-
used generalized autoregressive heteroskedasticity model, or GJR-GARCH model developed by 
Glosten et al. (1993), to account for the effect of good news and bad news on conditional volatility. 
The daily trading volume and high-low range volatility are also considered separately as additional 
regressors in GARCH equation for further examination. The augmented GJR-GARCH model is 
denoted as the following: 

t tR μ= + ε  (5) 
2 2

0 1 1 2 1 1 1 1t t t t t th s h Wα α α β δ− − − − −= + + + +ε ε  (6) 
where tR : return on day t, th : conditional volatility on day t, 1ts − : 1 if 1 0t− <ε and 0 otherwise, 1tW − : 
intraday high-low range variance or return of trading volume on day t-1. ts  is an indicator function to 
account for effect of the good news ( 0t >ε ) and bad news ( 0t <ε ) on conditional variance. Therefore, 
the effect of good news is measured by 1α , and the effect of bad news is measured by 1 2( )α α+ . The 

                                                 
3 The specifications and the estimation of SEMIFAR can be referenced to Zivot and Wang (2006), chapter 8, p293-295. 
4 The volatility series used is the power-transformed absolute difference, i.e, 

0.25
1| |t t ty I I −= − , where tI  is the closing index. 
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effects of high-low range volatility or trading volume on conditional variance are measured by 
coefficient δ . 
 
3.2.2. Fractionally Integrated GARCH (FIGARCH) and EGARCH (FIEGARCH) Model 
In view of the high persistence in GARCH models, Baillie et al. (1996) further introduced ARMA 
terms into GARCH model in terms of squared residuals. For the GARCH(p, q) model: 

2
1

1 1

p q

t i t i j t
i j

h a a b h− −
= =

= + +∑ ∑ε  (7) 

where 2
tε  can be expressed as follows: 

2  ( ) ( )t tL a b L uφ = +ε  (8) 
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m=max(p, q) and i i ia bφ = + . By extending the ARMA(m, q) in Equation (8) based on the condition of 
0<d<1, the specifications of the conditional variance can be written as: 

2( ) [ ( ) ( )(1 ) ]d
t tb L h a b L L Lφ= + − − ε  (9) 

Equation (9) 5 is the fractionally integrated GARCH or FIGARCH(m, d, q) called by Baillie et 
al. (1996). Bollerslev and Mikkelsen (1996) further propose FIEGARCH model as the following: 

1
( )(1 ) ln ( | | )

q
d

t j t j j t j
j

L L h a b x xφ γ− −
=

− = + +∑  (10) 

where tx  is the standardized residual /t thε  and 0jγ ≠  allows the leverage effects. The estimation 
results are listed in Table 3. 
 
Table 3: Estimation Results of FIGARCH and FIEGARCH Model a 
 

 c  a  1a  
2a  

1b  
1γ  

2γ  d  Logl AIC SC 
0.043 0.198** -0.089  0.259**   0.366*** -2377 4763 4789 FIEGARCH11 (0.937) (3.263) (0.103)  (0.142)   (0.071)    
0.022 -0.156*** -0.009 0.219*** 0.638*** -0.112*** 0.031 0.431*** -2361 4738 4779 FIEGARCH21 (0.491) (-4.845) (-0.190) (3.644) (3.784) (-3.330) (0.793) (3.613)    

a. t-statistics are given in parenthesis. *, ** and *** represent the significance level with p-values of 0,1, 0.05 and 0.01.  
Logl is the log-likelihood value. AIC and SC are Akaike information criterion and Schwartz Bayesian criterion, respectively. 
 

The selection of the lag terms for ARCH and GARCH in FIGARCH and FIEGARCH are 
mainly based on the Akaike information or Schwartz Bayesian criterion (AIC/SC). The estimated 
fraction difference parameter (d) for both models falls in the range (0, 0.5), suggesting the existence of 
long memory for index returns. The percentage returns are used in estimating FIGARCH and 
FIEGARCH as the daily returns are very small numbers which may cause the failure of convergence. 
 
3.2.3 Variance Gamma GARCH Model 
The variance gamma process has been popular in modeling jumps of asset returns as an alternative to 
Black-Scholes option pricing model (Madan et al., 1998; Carr and Wu, 2004). To better capture the 
stylized facts of asset returns with a fat-tailed distribution and volatilities which are clustered and long-
range dependent, the logarithmic asset returns under physical measure P  are assumed to be 
GARCH(1,1)-VG(0, σ , ν ) (henceforth VGGARCH) as in the following: 

                                                 
5 The FIGARCH and FIEGARCH equations and parameters estimations can be referenced to Zivot and Wang (2006). 
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where ( 2 / ) log(1 / 2)t t tg h hν= − −  and tε  is a sequence of independent random variables with mean 0 
and variance th . The risk-free interest rate r is assumed to be constant in every period. The larger 
jumps appear more frequently and cluster more together as ν  gets bigger, which creates greater 
volatility in the GARCH structure. λ  is the market price of risk. 
 
 
4.  Empirical Results 
4.1. Forecasting Evaluations 
The models adopted by the paper to assess the forecasting efficiency of future realized volatility are 
classified into two groups: six return-based models and four RV-based models. The first three return-
based models include GJR and its augmented ones, i.e, GJRhl and GJRvol, which denote the additional 
regressors of high-low range volatility and trading volume in conditional variance equation of 
GARCH, respectively. The fourth model is VGGARCH model. The fifth and the sixth are FIGARCH 
and FIEGARCH models. For RV-based models, SEMIFAR, MEM(1,1), ARMA(1,1) and AR(3) are 
considered. After initial parameter estimations, the out-of-sample forecasts for 1-, 5- and 22-day ahead 
volatilities are obtained from the estimated models. The 5-day forecast represents 1-week ahead 
forecast. The 22-day forecast, an assumed number of trading days for a calendar month, represents 1-
month ahead forecast. 5- and 22-day ahead volatility forecasts are obtained by summing the daily 
forecasted volatility with fixed estimated parameters in the models. The procedure is reiterated on a 
moving window basis. The out-of-sample period thus yields 992 one-day forecasts, 198 five-day 
forecasts and 45 twenty two-day forecasts. 
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Figure 1: RV vs. forecasted volatility series from 2004/1/2-2007/12/31 
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Figure 2: RV vs. forecasted volatility series from 2004/1/2-2007/12/31 
 

 
 

Figure 1 and 2 are 1-day ahead volatility forecasts by return-based models and RV-based 
models. The ex-post daily realized volatility is also placed for comparison purpose. By visual 
inspections, forecasted volatility series generated by all models seem to reveal spikes and troughs at 
positions similar to the RV series. However, forecasted series generated by FIEGARCH, SEMIFAR 
show more zigzags or frequent oscillations found in RV series than other models. Smooth slopes or flat 
line segments are found in series generated by GJR family and VGGARCH model. 

The forecast performance of various models is summarized in Table 4. Four measures are used 
to evaluate the model and are listed in the following: 

• Hit percentage: This is the percentage of correct directions of movements for 1-day ahead 
forecasts. By Dahl and Hylleberg (1999), a 2 2×  contingency table which summarizes the 
number of correct forecasted ups and downs is listed as in the following: 

 
Predicted 

  up down Subtotal 
up 

uun  udn  0un  
down 

dun  ddn  0dn  Actual 
subtotal 

0un  0dn  n  
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where n is the total number of 1-day ahead forecasts, uun  is the number of days when both the actual 
outcome and the predicted are up, ddn  is the number of days when both the actual and the predicted are 
down. The forecasted values can be evaluated by the following test statistic: 

2
0 02 2

{ , } { , } 0 0

( )
~ (1)

/
/ij i j

i u d j u d i j

n n n n
n n n

χ χ
∈ ∈

−
= ∑ ∑  (11) 

A small p value rejects the null hypothesis that the model does not outperform the chance of 
random choice. 

• P-statistic: Suggested by Blair et al. (2001), P-statistic measures the proportion of the 
variances of realized volatilities explained by volatility forecasts. 
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−
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+ −
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−
= −

−

∑

∑
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,t Ny  denotes realized volatility measured as the sum of daily RV over an N-day forecast period 
beginning on day t, and ,ˆt Ny  denotes the corresponding volatility forecast for the same forecast period. 
For the data of TAIEX used in the paper, T=2,209, all observations of the whole sample, and S=1,217, 
the number of in-sample observations. N is the forecast horizon of 1, 5 and 22 days. 

• Root mean square error (RMSE): 
2( )/

( 1), ( 1),
1

1 ˆRMSE
( ) /

( )
T S N

S N i N S N i N
i

y y
T S N

−

+ − + −
=

= −
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• Mean absolute error (MAE): 
( )/

( 1), ( 1),
1

1 ˆMAE | |
( ) /

T S N

S N i N S N i N
i

y y
T S N

−

+ − + −
=

= −
− ∑  (14) 

 
Table 4: Statistics of Out-of-Sample Volatility Forecast Using Realized Volatility as a Benchmark across 

Models for TAIEX Index a 
 

1-day Forecast 5-day Forecast 22-day Forecast Models Hit RMSE MAE P-value RMSE MAE P-value RMSE MAE P-value 
GJR 0.6683 0.00415 0.0033 0.2378 0.0153 0.0149 -0.1191 0.0721 0.0739 -0.7993 
GJRhl 0.7016 0.00401 0.0032 0.2527 0.0099 0.0073 0.6845 0.0262 0.0205 0.8089 
GJRvol 0.6421 0.00436 0.0037 0.0224 0.0152 0.0154 -0.1667 0.0752 0.0816 -1.0882 
VGGARCH 0.6452 0.00436 0.0036 0.0606 0.0163 0.0146 -0.0649 0.0761 0.0647 -0.6003 
FIGARCH 0.6683 0.00416 0.0032 0.2463 0.0140 0.0128 0.1806 0.0632 0.0621 -0.2367 
FIEGARCH 0.6743 0.00412 0.0031 0.2708 0.0147 0.0129 0.1487 0.0873 0.0846 -1.7569 
SEMIFAR 0.7852 0.00406 0.0028 0.2825 0.0129 0.0092 0.4598 0.0507 0.0344 0.4064 
MEM11 0.7056 0.00416 0.0030 0.2577 0.0126 0.0095 0.4986 0.0495 0.0365 0.4465 
ARMA11 0.6603 0.00406 0.0033 0.2242 0.0131 0.0126 0.2662 0.0556 0.0638 -0.2051 
AR(3) 0.6592 0.00422 0.0038 0.0526 0.0152 0.0180 -0.3497 0.0723 0.0983 -1.7643 

a. Hit is the percentage of directional accuracy for 1-day forecast. The other measures of forecast accuracy are root mean square error (RMSE), mean 
absolute error (MAE) and P-Statistics which is suggested by Blair et al. (2001). 

 
For the 1-day ahead directions forecasts in Table 4, SEMIFAR ranks the highest hit percentage, 

followed by MEM11 and GJRhl model, which all three models have P values less than 0.01 and thus 
reject the null hypothesis of no superiority over random walks. As for the performance of 1-day 
forecasting errors in terms of RMSE, GJRhl outperforms all other models. SEMIFAR and MEM11 
ranks the second and the third. However, they outperform GJRhl in terms of MAE and P-statistic. 
FIEGARCH has the highest P-statistic but lacks consistency for the criterions of RMSE and MAE. 
Therefore, SEMIFAR model seems to have better performance in terms of accuracy of direction 
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forecasting and consistently outperforms GJRhl and MEM11 models based on error criterions. For 5- 
and 22-day volatility forecasts, however, GJRhl consistently outperforms SEMIFAR and MEM11 
models in terms of three error criterions. 
 
4.2 Econometric Analysis 
The regressions of RV on the forecasted series from previous models are conducted in a non-
overlapping framework (Christensen and Prabhala, 1998): 

, ,ˆln( ) ln( )t N t N ty y eα β= + +  (15) 
where ,t Ny  denotes realized volatility measured as the sum of daily RV over an N-day forecast period 
beginning on day t. ,ˆt Ny  is the forecasted volatility series generated from models discussed in previous 
section. The use of log-transformed volatility series is recommended by Andersen et al. (2001a) to 
make the distribution of the error term close to normal density. Regressions based on the transformed-
log series are also found to easily accept the null hypothesis of no heteroscedasticity in error terms. 
Due to limited space, only α , β  and adjusted 2R  estimated by OLS using Newey-West standard 
errors are reported in Table 5. 
 
Table 5: Regression of Out-of-Sample Volatility Forecasts across Models on Log Realized Volatilities a 
 

1-day forecast 5-day forecast 22-day forecast Models α  β  2R  α  β  2R  α  β  2R  
-1.2639 0.7723 0.2865 -0.9519 0.7412 0.4301 -0.8356 0.5443 0.2543 GJR (-7.2869) (19.9750)  (-5.4778) (12.2340)  (-4.4655) (4.0006)  
-1.0051 0.8175 0.3115 -0.7240 0.7679 0.7571 -0.2768 0.8482 0.9098 GJRhl (-5.7214) (21.1970)  (-7.6071) (24.7980)  (-4.4216) (21.0900)  
-1.4891 0.7205 0.2652 -0.8965 0.7638 0.4775 -0.8896 0.5153 0.2084 GJRvol (-8.7047) (18.9360)  (-5.5274) (13.4540)  (-4.5525) (3.5472)  
-1.3929 0.7394 0.2568 -1.1200 0.6722 0.3724 -0.8428 0.5111 0.2848 VGGARCH (-7.7404) (18.5330)  (-6.2130) (10.8570)  (-4.8816) (4.3039)  
2.7348 1.6346 0.3019 -0.6612 0.8303 0.4814 -0.6641 0.6489 0.2995 FIGARCH (7.5978) (20.7240)  (-3.7106) (13.5590)  (-3.2156) (4.4511)  
1.8769 1.4417 0.2879 -0.9528 0.7244 0.4470 -0.9238 0.4919 0.3034 FIEGARCH (5.6979) (20.0420)  (-5.6747) (12.6590)  (-6.2378) (4.4909)  
-0.0009 0.9982 0.3116 0.8175 1.2625 0.5174 0.6865 1.4289 0.4990 SEMIFAR (-0.0040) (21.2020)  (3.0603) (14.5680)  (2.0291) (6.6956)  
-0.9753 0.8109 0.3146 -0.3075 0.9151 0.4985 -0.2367 0.8687 0.4835 MEM11 (-5.5475) (21.3500)  (-1.5577) (14.0300)  (-1.1406) (6.4949)  
-0.0845 1.0264 0.2984 -0.1314 1.0175 0.4542 -0.3156 0.9315 0.3167 ARMA11 (-0.3742) (20.5520)  (-0.5733) (12.8430)  (-1.1540) (4.6249)  
-0.0538 1.0501 0.2387 -0.2200 1.0270 0.2575 -1.2424 0.2705 -0.0082 AR(3) (-0.2034) (17.6530)  (-0.6423) (8.3261)  (-3.0242) (0.8017)  

a. The parenthesis below each estimated coefficient is the t-statistic based on Newey-West standard errors. 
 

The null hypothesis of heteroscedasticity is accepted at p=0.05 only for AR(3) for 5- and 22-
day ahead forecast. The hypothesis of unbiased forecast is further tested on the estimated coefficients 
with H0: 0α =  and 1β = . Wald tests conducted on the coefficients across models show that only 
SEMIFAR 1-day forecast and MEM11 22-day forecast are unbiased forecast for RV series. To 
mitigate the potential bias from large sample size leading to Type II errors, the critical test statistic 
values of t and F are also adjusted6. GJRhl model is found to deliver the highest adjusted 2R values for 
5- and 22-day ahead forecast, which is consistent with the best outcome by three measures for GJRhl. 
 

                                                 
6 As shown by Lindley's paradox, the t-and F-statistics are adjusted when their absolute values are greater than the value of the following: 

* 1/ * ( 1)/1( 1), ( 1)
1

T k TTt T k T F T
K

−−
= − × − = × −

−
 

where T is the sample size and k is the number of degrees of freedom lost in the regression. 
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5.  Conclusion 
The realized volatility computed from intraday data has been widely regarded as a more accurate proxy 
for market volatility than squared daily returns. To further evaluate the efficacy of the high-low range 
volatility, which is a measure with reviving studies recently, GJR-GARCH includes the range volatility 
as an additional explanatory variable to forecast the conditional variance. Various models based on the 
realized volatility are presented in the paper and compared for their forecasting efficiency. 

Several measures are adopted to evaluate the forecasting efficiency. The most naïve measure is 
the 1-day ahead directional forecast. The long-memory model of SEMIFAR performs best with a 78% 
hits among all models examined. MEM and GJRhl model rank the second and the third with negligible 
difference in hit percentage. However, GJRhl performs best by the measure of RMSE. For 5- and 22-
day ahead forecast, GJRhl consistently outperforms SEMIFAR and MEM11 by the measure of RMSE, 
MAE and P-statistics. 

The empirical results confirm that the long-memory model, SEMIFAR, is able to deliver good 
quality of directional forecasts and merits further studies on its application in volatility trading and risk 
management. Additionally, the high-low range volatility, when combined with GJR-GARCH model, is 
able to deliver good quality of forecasted volatility values. GJRhl model also has the highest predictive 
ability in the framework of forecasting regressions. The strong empirical evidence supports a possible 
reconciliation between GJRhl and SEMIFAR model to obtain a more robust econometric model in 
forecasting volatility. 
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